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Section A (36 marks)

1 Find the values of P, Q, R and S in the identity 3x3 + 18x2 + Px + 31 ≡ Q(x + R)3 + S. [5]

2 You are given that M = ( 4 0
−1 3

).

(i) The transformation associated with M is applied to a figure of area 3 square units. Find the area
of the transformed figure. [2]

(ii) Find M−1 and det M−1. [3]

(iii) Explain the significance of det M × det M−1 in terms of transformations. [2]

3 The roots of the cubic equation x3 − 4x2 + 8x + 3 = 0 are α, β and γ .

Find a cubic equation whose roots are 2α − 1, 2β − 1 and 2γ − 1. [7]

4 Represent on an Argand diagram the region defined by 2 < |� − (3 + 2j)| ≤ 3. [6]

5 Use standard series formulae to show that
n

∑
r=1

r2(3 − 4r) = 1
2n(n + 1)(1 − 2n2). [5]

6 A sequence is defined by u1 = 5 and un+1 = un + 2n+1. Prove by induction that un = 2n+1 + 1. [6]
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Section B (36 marks)

7 Fig. 7 shows part of the curve with equation y =
x + 5

(2x − 5)(3x + 8)
.

Fig. 7

x

y

(i) Write down the coordinates of the two points where the curve crosses the axes. [2]

(ii) Write down the equations of the two vertical asymptotes and the one horizontal asymptote. [3]

(iii) Determine how the curve approaches the horizontal asymptote for large positive and large
negative values of x. [3]

(iv) On the copy of Fig. 7, sketch the rest of the curve. [2]

(v) Solve the inequality
x + 5

(2x − 5)(3x + 8)
< 0. [2]

8 The function f(�) = �4 − �3 + a�2 + b� + c has real coefficients. The equation f(�) = 0 has roots α, β ,
γ and δ where α = 1 and β = 1 + j.

(i) Write down the other complex root and explain why the equation must have a second real root.
[2]

(ii) Write down the value of α + β + γ + δ and find the second real root. [3]

(iii) Find the values of a, b and c. [5]

(iv) Write down f(−�) and the roots of f(−�) = 0. [2]
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9 You are given that A =
⎛⎜⎝−2 1 −5

3 a 1
1 −1 2

⎞⎟⎠ and B =
⎛⎜⎝ 2a + 1 3 1 + 5a

−5 1 −13
−3 − a −1 −2a − 3

⎞⎟⎠.

(i) Show that AB = (8 + a)I. [3]

(ii) State the value of a for which A−1 does not exist. Write down A−1 in terms of a, when A−1 exists.
[3]

(iii) Use A−1 to solve the following simultaneous equations. [5]

−2x + y − 5� = −55

3x + 4y + � = −9

x − y + 2� = 26

(iv) What can you say about the solutions of the following simultaneous equations? [1]

−2x + y − 5� = p

3x − 8y + � = q

x − y + 2� = r
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